Nagarjuna Degree College 38/36, Ramagondanahalli, Yelahanka Hobli	11525
Bengaluru - 560 064. Reg. No	

V Semester B.Sc. Degree Examination, April - 2022 MATHEMATICS

(CBCS Scheme Semester 2022)

Paper : V

Maximum Marks: 70

Time : 3 Hours

Instructions to Candidates:

Answer all questions.

PART-A

Answer any five questions.

- 1. a) In a Ring $(R, +, \cdot)$ prove that $(-a).(-b) = a.b \forall a, b \in R$.
 - b) Define subring of a ring and given an example.
 - c) Prove that every field is a principal ideal ring.
 - d) Find the maximum directional derivative of $\phi = x^3 y^2 z$ at the point (1,-2,3).
 - e) If $\vec{F} = yz\hat{i} + zx\hat{j} + xy\hat{k}$ then show that \vec{F} is irrotational vector.
 - f) Evaluate : $\Delta^4 (1-ax)(1-bx)(1-cx)(1-dx)$.
 - g) Write the Newton's divided difference interpolation formula.
 - h) State the Trapezoidal rule for the integral $\int_a^b f(x) dx$.

PART - B

Answer two full questions.

- 2. a) Prove that the set $R = \{0, 1, 2, 3, 4, 5\}$ is a commutative ring with respect to \bigoplus_6 and \bigotimes_6 as the two composition.
 - b) Prove that a ring R is without zero divisors if and only if the cancellation laws hold in R.

OR

- 3. a) Prove that the ring $(Z_n, +_n, X_n)$ is an integral domain if and only if n is a prime number.
 - b) Show that the set of all real numbers of the form $a+b\sqrt{2}$ where a and b are integers is a ring with respect to addition and multiplication.

 $(2 \times 10 = 20)$

(5×2=10)

4.

- a) Find all the principal ideals of the ring $R = \{0, 1, 2, 3, 4, 5, 6, 7\}$ with respect to \bigoplus_{g} and \bigotimes_{g} .
 - b) If $f: R \to R'$ be a homomorphism with kernal k, then prove that f is one one if and only if $k = \{0\}$.

(OR)

- 5. a) Let R = R' = C be the field of complex numbers, Let $f: R \to R'$ be defined by $f(Z) = \overline{Z}$ where \overline{Z} is the complex conjugate of Z, show that f is an isomorphism.
 - b) State and prove fundamental theorem of homomorphism of rings.

PART-C

Answer two full questions.

- 6. a) Find the directional derivative of $\phi(x, y, z) = x^2 2y^2 + 4z^2$ at the point (1,1,-1) in the direction of $2\hat{i} \hat{j} + \hat{k}$.
 - b) If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = |\vec{r}|$ then prove that $\nabla r^n = nr^{n-1}\hat{r}$.

(**O**R)

- 7. a) Find the angle between the surfaces $4x^2y + z^3 = 4$ and $5x^2y 2yz = 9x$ at the point (1,-1,2).
 - b) If the vector $\vec{F} = (3x+3y+4z)\hat{i} + (x-ay+3z)\hat{j} + (3x+2y-z)\hat{k}$ is solenoidal find 'a'.
- 8. a) Prove that $\nabla^2 f(r) = f''(r) + \frac{2}{r} f'(r)$ where $r^2 = x^2 + y^2 + z^2$.
 - b) Show that the vector $\vec{F} = (6xy + z^3)\hat{i} + (3x^2 z)\hat{j} + (3xz^2 y)\hat{k}$ is irrotational. Find ϕ such that $\vec{F} = \nabla \phi$.

(**OR**)

- 9. a) Find Curl (Curl \vec{F}) where $\vec{F} = x^2 y \hat{i} 2xz \hat{j} + 2yz \hat{k}$.
 - b) If ϕ is a scalar point function and \vec{F} is a vector point function then prove that $div(\phi\vec{F}) = \phi div\vec{F} + grad\phi.\vec{F}$.

11525

 $(2 \times 10 = 20)$

11525

 $(2 \times 10 = 20)$

PART - D

Answer two full questions.

10. a) Use the method of separation of symbols to prove that

$$U_0 + U_1 x + U_2 x^2 + \dots, + \infty = \frac{U_0}{1 - x} + \frac{x U_0}{(1 - x)^2} + \frac{x^2 \Delta^2 U_0}{(1 - x)^3} + \dots, \infty$$

b) Obtain a function whose first difference is $x^3 + 3x^2 + 5x + 12$.

(OR)

11. a) Find a cubic polynomial which takes the following data.

x	0	1	2	3
f(x)	1	2	1	10

X	8	8.5	.9	9.5	10
f(x)	50	57	64	71	75

12. a) Using Lagranges interpolation formula find f(2) from the following data

x	0	1	3	4
f(x)	5	6	50	105

b) Using Simpson's $\frac{3}{8}^{th}$ rule Evaluate $\int_0^6 \frac{1}{1+x^2} dx$.

(OR)

13. a)

Evaluate $\int_{0}^{0.6} e^{-x^2} dx$ by taking 6 subintervals By using Simpson's $\frac{1}{3}^{rd}$ Rule.

b) Prepare divide difference table for the following data.

x	1	3	4	6	10
f(x)	0	18	58	190	920