Nagarjuna Degree College 38/36, Ramagondanahalli, Yelahanka Hobli, Bengaluru - 560 064. Rcg. No.

11323

Maximum Marks : 70

 $(5 \times 2 = 10)$

III Semester B.Sc. Degree Examination, April - 2022 MATHEMATICS

(CBCS Semester Scheme 2018 Batch and onwards)

Paper : III

Time : 3 Hours

Instructions to Candidates:

Answer all questions.

PART-A

Answer any five questions.

1. a) Define right coset of a subgroup of a group.

- b) Find all the left cosets of the subgroup $H = \{0, 2, 4\}$ of the group (Z_6, \oplus_6) .
- c) State Raabe's test.
- d) Show that $\left\{\frac{1}{n}\right\}$ is monotonically decreasing sequence.
- e) Test the convergence of the series

$$\sqrt{\frac{1}{4}} + \sqrt{\frac{2}{6}} + \sqrt{\frac{3}{8}} + \dots$$

- f) State Cauchy's mean value theorem.
- g) Verify Rolle's theorem for the function $f(x) = 8x x^2$ in [2,6].
- h) Evaluate $\frac{lt}{x \to 0} \left(\frac{1 \cos x}{x^2} \right)$ by using L Hospitals' rule.

16

(2) PART - B

Answer one full question.

- 2. a) In a group G, prove that $O(a) = O(a^{-1}), \forall a \in G$.
 - b) Find all the generators of the cyclic group of order 8.
 - c) Find all the distinct right cosets of the subgroup $H = \{0, 4, 8\}$, in (Z_{12}, \bigoplus_{12}) .

(OR)

- 3. a) Prove that any two right (left) cosets of subgroup H of a group G are either identical or disjoint.
 - b) Prove that every group of order Four is abelian.
 - c) If an element 'a' of a group G is of order 'n' and e is the identity in G, then prove that for some positive integer m, $a^m = e$ if and only if n divids m.

PART-C

Answer two full questions.

4. a) If
$$\lim_{n \to \infty} a_n = a$$
 and $\lim_{n \to \infty} b_n = b$, prove that $\lim_{n \to \infty} (a_n + b_n) = a + b$.

- b) Discuss the nature of the sequence $\left\{ \left(1 + \frac{1}{n}\right)^n \right\}$.
- c) Test the convergence of the sequence

i.
$$\left\{\frac{3n-4}{4n+3}\right\}$$
 ii. $\left\{\frac{(-1)^{n-1}}{n}\right\}$.

(OR)

- 5. a) Prove that every convergent sequence is bounded.
 - b) Examine the convergence of the sequence

i.
$$\left\{ \left(\frac{2n^2 + 3n + 5}{n + 3} \right) Sin\left(\frac{\pi}{n} \right) \right\}$$
 ii. $\left\{ \left(1 + \frac{a}{n} \right)^{\frac{n}{b}} \right\}$

c) Prove that a sequence which is monotonically increasing and bounded above is convergent.

 $(1 \times 15 = 15)$

 $(2 \times 15 = 30)$

- 6. a) State and prove D'Alembert's ratio test for series of positive terms.
 - b) Test the convergence of the series.

$$\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \dots$$

c) Find the sum to infinity of the series $1+2\left(\frac{1}{9}\right)+\frac{2.5}{1.2}\left(\frac{1}{81}\right)+\frac{2.5.8}{1.2.3}\left(\frac{1}{729}\right)+\dots$

(OR)

- 7. a) State and prove Cauchy's root test for a series of positive terms.
 - b) Discuss convergence of the series

$$\sum \frac{1.2.3....n}{3.5.7.9....(2n+1)}.$$

c) Sum to infinity the series

$$1 + \frac{1+2}{\underline{|2|}} + \frac{1+2+3}{\underline{|3|}} + \frac{1+2+3+4}{\underline{|4|}} + \dots$$

PART-D

Answer one full questions.

(1×15=15)

- 8. a) Prove that every continuous function over a closed interval is bounded.
 - b) Evaluate $\lim_{x\to 0} (1 + \sin x)^{\cot x}$ using L Hospital's rule.
 - c) Expand the function $\log_e^{(1+x)}$ up to the term containing x⁴ by Maclaurin's expanison.

(OR)

- 9. a) State and prove Lagranges mean value theorem.
 - b) Examine the differentiability of the function $f(x) = \begin{cases} x^2 & \text{if } x \le 3 \\ 6x 9 \text{if } x > 3 \end{cases}$ at x = 3.

c) Evaluate
$$\lim_{x\to 0} \left(\frac{1}{x}\right)^{\tan x}$$
 by using L - Hospital's rule.