Nagarjuna Degree College 38/36, Ramagondanahalli, Yelahanka Hobli, Reg. Bengaluru - 560 064.

.

No.					

DCMT101

I Semester B.Sc. Degree Examination, May/June - 2022 MATHEMATICS

Algebra - I and Calculus - I (NEP - CORE Scheme 2021-22 and Onwards) Paper :I MATDSCT 1.1

Time : 2½ Hours

Instructions to Candidates:

Answer all questions.

I. Answer any Six questions.

1. Find the value of k in order that the matrix

1	6	k	-1]	
<i>A</i> =	2	3	1	is of rank 2.
	3	4	2	

2. Find the eigen values of the matrix
$$\begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix}$$
.

3. Find the nth derivative of $e^{2x} \cos 3x$.

4. If
$$u = x^2 yz$$
 prove that $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$.

- 5. Evaluate $\lim_{x\to 0} x \sin\left(\frac{1}{x}\right)$.
- 6. State Lagrange's mean value theorem.

7. Discuss the continuity of
$$f(x) = \begin{cases} 3x+1 \ x > 1 \\ 2x-1 \ x \le 1 \end{cases}$$
 at $x = 1$.

8. Evaluate $\lim_{x\to 0} \frac{x-\sin x}{x^3}$.

Maximum Marks : 60

[P.T.O.

DCMT101 (3×4=12)

 $(3 \times 4 = 12)$

8

II. Answer any Three questions.

9. Find the rank of the matrix $A = \begin{bmatrix} 1 & 1 & 1 & 1 & 2 \\ 2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2 \end{bmatrix}$ by reducing it to normal form.

10. Find λ and μ such that the system of equations

x+3y+4z = 5 x+2y+z = 3 $x+3y+\lambda z = \mu$ has

- i. no solution
- ii. unique solution.
- iii. many solutions.
- 11. Find the eigen values and the corresponding eigen vectors of the matrix.
 - $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}.$
- 12. State and prove Cayley Hamilton theorem.

13. By using Cayley - Hamilton theorem. Find the adjoint of the matrix $\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix}$.

III. Answer any Three questions.

14. Discuss the continuity of
$$f(x) = \begin{cases} x^2 - 1 & \text{for } x < 1 \\ 1 - \frac{1}{x} & \text{for } x > 1 \\ 0 & \text{for } x = 1 \end{cases}$$

DCMT101

 $(3 \times 4 = 12)$

 $(3 \times 4 = 12)$

- 15. Examine the differentiability of $f(x) = \begin{cases} x^2, & x < 3 \\ 6x 9, & x \ge 3 \end{cases}$ at x = 3.
- 16. Find the nth derivative of $\frac{4x}{(x+1)^2(x-1)}$.
- 17. Prove that a function which is continuous in a closed interval attains its bounds in the interval.

18. If
$$y = \sin(m \sin^{-1} x)$$
, prove that $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2 - m^2)y_n = 0$.

IV. Answer any **Three** questions.

- 19. State and prove Rolle's theorem.
- 20. State and prove Cauchy's Mean value theorem.
- 21. Expand log(1 + sin x) up to the term containing x^4 using Maclaurin's series.
- 22. Evaluate $\lim_{x\to 0} \frac{\tan x \sin x}{\sin^2 x}$.
- 23. Evaluate $\lim_{x\to 0} (1 + \sin x)^{\cot x}$.
- V. Answer any Three questions.

24. If u = f(r) where $r = \sqrt{x^2 + y^2 + z^2}$ show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = f''(r) + \frac{2}{r}f'(r)$.

25. State the prove Euler's theorem on Homogeneous function.

26. If
$$u = x^2$$
, $v = y^2$ find $J = \frac{\partial(u, v)}{\partial(x, y)}$ and $J' = \frac{\partial(x, y)}{\partial(u, v)}$ also verify that $JJ' = 1$.

27. Expand $e^x \cos y$ in a Taylor's series about the point at $(1, \pi/4)$ upto second degree terms.

28. Find the extreme value of the function $f(x, y) = x^3 + y^3 - 3x - 12y + 2$.